

HYDERABAD

Generating Natural Language Attacks in a Hard Label Black Box Setting Rishabh Maheshwary, Saket Maheshwary and Vikram Pudi

IIIT Hyderabad

Introduction

- Deep neural networks are vulnerable to adversarial attacks. In many real world applications, the attackers cannot access the details of the target model.
- Prior Natural language attacks require access to either:

Confidence Scores

Training Data Information

But in real word applications we rarely have access to the above information.

0.60

- We focus on a realistic **decision based** or **hard label** black box setting. In this setting the attacker does not has access to the parameters, training data or even the confidence score of the target model.
- Our proposed attack method is able to craft plausible and semantically similar adversarial examples using only the topmost predicted label.

Problem Formulation

max $S(X, X^*)$ s.t. $C(F(X^*)) = 1$ X*

- Semantic Similarity S
- Original text input
- Adversarial text input
- Adversarial Criteria C (F(X)) = 0
- Target model • F

Proposed Approach

In a hard label black box setting, we cannot access the confidence scores of the target model. Therefore, our attack follows the following three steps:

- **Random Initialisation**: Generates an adversarial text by randomly substituting words with synonyms.
- Search Space Reduction: Replaces back the substituted words with their original counterparts.
- Genetic Optimization: Maximizes the semantic similarity between the adversarial and original input.
- Overview

Working Example

Vancouver, Canada | Feb 2-9, 2021

al e	exai	mp	le	
mov	vie			
flic				
inc	ĸ			
mov	vie			

	•		
Lvn	DNI	mor	TC
LAP	СІТ		Ιίσ

- We consider **classification and entailment tasks**.
- We attacked five target models across seven benchmark datasets and used attack success rate. perturbation rate, grammatical correctness and human evaluation to evaluate our proposed attack.
- Our attack achieves more than 90% success rate across all datasets and target models ...
- In comparison to baselines, across all datasets and target models our attack improves the success rate by atleast 20%, reduces the perturbation and grammatical error rate by atleast 15%.

Generated Adversarial Examples	Prediction
It's not necessarily [definitely] for kids	$Neg \rightarrow Pos$
Will Avast protect my computer [machinery]?	Tech \rightarrow Music
P: A portion of the nation's income is saved by allowing for investment. H: The nation's income is divided into portions [fractions].	Entail.→ Neutral

Conclusion

- Our novel decision based attack does not require access to model parameters, confidence scores, training data information and substitute models.
- Extensive experimentation and ablation studies demonstrate the effectiveness of our attack.

Paper: https://arxiv.org/pdf/2012.14956.pdf Code: github.com/RishabhMaheshwary/hard-label-attack Also implemented in: github.com/QData/TextAttack